Tautness for riemannian foliations on non-compact manifolds

For a riemannian foliation on a closed manifold M , it is known that is taut (i.e. the leaves are minimal submanifolds) if and only if the (tautness) class defined by the mean curvature form (relatively to a suitable riemannian metric μ) is zero (cf. Álvarez in Ann Global Anal Geom 10:179–194, 1992)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2008-06, Vol.126 (2), p.177-200
Hauptverfasser: Royo Prieto, José Ignacio, Saralegi-Aranguren, Martintxo, Wolak, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a riemannian foliation on a closed manifold M , it is known that is taut (i.e. the leaves are minimal submanifolds) if and only if the (tautness) class defined by the mean curvature form (relatively to a suitable riemannian metric μ) is zero (cf. Álvarez in Ann Global Anal Geom 10:179–194, 1992). In the transversally orientable case, tautness is equivalent to the non-vanishing of the top basic cohomology group , where (cf. Masa in Comment Math Helv 67:17–27, 1992). By the Poincaré Duality (cf. Kamber et and Tondeur in Astérisque 18:458–471, 1984) this last condition is equivalent to the non-vanishing of the basic twisted cohomology group , when M is oriented. When M is not compact, the tautness class is not even defined in general. In this work, we recover the previous study and results for a particular case of riemannian foliations on non compact manifolds: the regular part of a singular riemannian foliation on a compact manifold (CERF).
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-008-0172-0