RABINOWITZ FLOER HOMOLOGY AND SYMPLECTIC HOMOLOGY

The Rabinowitz-Floer homology groups $RFH_*(M,W)$ are associated to an exact embedding of a contact manifold $(M,\xi)$ into a symplectic manifold $(W,\omega)$. They depend only on the bounded component $V$ of $W\setminus M$. We construct a long exact sequence in which symplectic cohomology of $V$ ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales scientifiques de l'École normale supérieure 2010, Vol.43 (6), p.957-1015
Hauptverfasser: CIELIEBAK, Kai, FRAUENFELDER, Urs, OANCEA, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Rabinowitz-Floer homology groups $RFH_*(M,W)$ are associated to an exact embedding of a contact manifold $(M,\xi)$ into a symplectic manifold $(W,\omega)$. They depend only on the bounded component $V$ of $W\setminus M$. We construct a long exact sequence in which symplectic cohomology of $V$ maps to symplectic homology of $V$, which in turn maps to Rabinowitz-Floer homology $RFH_*(M,W)$, which then maps to symplectic cohomology of $V$. We compute $RFH_*(ST^*L,T^*L)$, where $ST^*L$ is the unit cosphere bundle of a closed manifold $L$. As an application, we prove that the image of an exact contact embedding of $ST^*L$ (endowed with the standard contact structure) cannot be displaced away from itself by a Hamiltonian isotopy, provided $\dim\,L\ge 4$ and the embedding induces an injection on $\pi_1$. In particular, $ST^*L$ does not admit an exact contact embedding into a subcritical Stein manifold if $L$ is simply connected. We also prove that Weinstein's conjecture holds in symplectic manifolds which admit exact displaceable codimension $0$ embeddings.
ISSN:0012-9593
1873-2151
DOI:10.24033/asens.2137