ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES

Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian & New Zealand journal of statistics 2007-03, Vol.49 (1), p.93-107
Hauptverfasser: Dehay, Dominique, Yao, Jian-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 1
container_start_page 93
container_title Australian & New Zealand journal of statistics
container_volume 49
creator Dehay, Dominique
Yao, Jian-Feng
description Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.
doi_str_mv 10.1111/j.1467-842X.2006.00466.x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00364850v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34274557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</originalsourceid><addsrcrecordid>eNqNkMtSgzAUhhlHZ7y-AytnXIAhCQksXGCbWpQWhXrdnAk0jFS0SrzUtzeI07XZ5MzJ_505-SzL9pDrmXO8cD3KuBNQfOdihJiLEGXMXW1YO-uHTVMTFjoe5WTb2tV6gZBHEWE71iid2kl8IZJ4nKZDW-SzeBLNYtMdpZk9jPNBJmYiubfT01xkN2JoT6LsIr2xz68nl_Zllg5Enot839qqZKPVwd-9Z12PxGwwdpL0LB5EiVMSs5VTBLLgnChVYFrwMgwDVSLEsQwwrSieI9_HNCwIqwpScVmWgZRzNieFosRDxZzsWUf93EfZwGtbP8v2G5ayhnGUQNdD5lc08NGnZ7KHffa1Xb59KP0Oz7UuVdPIF7X80EAo5tT3uQkGfbBsl1q3qlpP9hB0kmEBnUvoXEInGX4lw8qgJz36VTfq-98cRNOH3FSGd3q-1u9qteZl-wSME-7D7fQM8DTndw_-FYTkB7MAi14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34274557</pqid></control><display><type>article</type><title>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dehay, Dominique ; Yao, Jian-Feng</creator><creatorcontrib>Dehay, Dominique ; Yao, Jian-Feng</creatorcontrib><description>Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/j.1467-842X.2006.00466.x</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>discrete observations ; likelihood estimator ; Markov jump process ; Mathematics ; Statistics</subject><ispartof>Australian &amp; New Zealand journal of statistics, 2007-03, Vol.49 (1), p.93-107</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</citedby><cites>FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</cites><orcidid>0000-0002-5567-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-842X.2006.00466.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-842X.2006.00466.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00364850$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Yao, Jian-Feng</creatorcontrib><title>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</title><title>Australian &amp; New Zealand journal of statistics</title><description>Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.</description><subject>discrete observations</subject><subject>likelihood estimator</subject><subject>Markov jump process</subject><subject>Mathematics</subject><subject>Statistics</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMtSgzAUhhlHZ7y-AytnXIAhCQksXGCbWpQWhXrdnAk0jFS0SrzUtzeI07XZ5MzJ_505-SzL9pDrmXO8cD3KuBNQfOdihJiLEGXMXW1YO-uHTVMTFjoe5WTb2tV6gZBHEWE71iid2kl8IZJ4nKZDW-SzeBLNYtMdpZk9jPNBJmYiubfT01xkN2JoT6LsIr2xz68nl_Zllg5Enot839qqZKPVwd-9Z12PxGwwdpL0LB5EiVMSs5VTBLLgnChVYFrwMgwDVSLEsQwwrSieI9_HNCwIqwpScVmWgZRzNieFosRDxZzsWUf93EfZwGtbP8v2G5ayhnGUQNdD5lc08NGnZ7KHffa1Xb59KP0Oz7UuVdPIF7X80EAo5tT3uQkGfbBsl1q3qlpP9hB0kmEBnUvoXEInGX4lw8qgJz36VTfq-98cRNOH3FSGd3q-1u9qteZl-wSME-7D7fQM8DTndw_-FYTkB7MAi14</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Dehay, Dominique</creator><creator>Yao, Jian-Feng</creator><general>Blackwell Publishing Asia</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></search><sort><creationdate>200703</creationdate><title>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</title><author>Dehay, Dominique ; Yao, Jian-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>discrete observations</topic><topic>likelihood estimator</topic><topic>Markov jump process</topic><topic>Mathematics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Yao, Jian-Feng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Australian &amp; New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehay, Dominique</au><au>Yao, Jian-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</atitle><jtitle>Australian &amp; New Zealand journal of statistics</jtitle><date>2007-03</date><risdate>2007</risdate><volume>49</volume><issue>1</issue><spage>93</spage><epage>107</epage><pages>93-107</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><doi>10.1111/j.1467-842X.2006.00466.x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1369-1473
ispartof Australian & New Zealand journal of statistics, 2007-03, Vol.49 (1), p.93-107
issn 1369-1473
1467-842X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00364850v1
source Wiley Online Library Journals Frontfile Complete
subjects discrete observations
likelihood estimator
Markov jump process
Mathematics
Statistics
title ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20LIKELIHOOD%20ESTIMATION%20FOR%20DISCRETELY%20OBSERVED%20MARKOV%20JUMP%20PROCESSES&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Dehay,%20Dominique&rft.date=2007-03&rft.volume=49&rft.issue=1&rft.spage=93&rft.epage=107&rft.pages=93-107&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/j.1467-842X.2006.00466.x&rft_dat=%3Cproquest_hal_p%3E34274557%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34274557&rft_id=info:pmid/&rfr_iscdi=true