ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES
Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is pro...
Gespeichert in:
Veröffentlicht in: | Australian & New Zealand journal of statistics 2007-03, Vol.49 (1), p.93-107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | 1 |
container_start_page | 93 |
container_title | Australian & New Zealand journal of statistics |
container_volume | 49 |
creator | Dehay, Dominique Yao, Jian-Feng |
description | Summary
The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method. |
doi_str_mv | 10.1111/j.1467-842X.2006.00466.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00364850v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34274557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</originalsourceid><addsrcrecordid>eNqNkMtSgzAUhhlHZ7y-AytnXIAhCQksXGCbWpQWhXrdnAk0jFS0SrzUtzeI07XZ5MzJ_505-SzL9pDrmXO8cD3KuBNQfOdihJiLEGXMXW1YO-uHTVMTFjoe5WTb2tV6gZBHEWE71iid2kl8IZJ4nKZDW-SzeBLNYtMdpZk9jPNBJmYiubfT01xkN2JoT6LsIr2xz68nl_Zllg5Enot839qqZKPVwd-9Z12PxGwwdpL0LB5EiVMSs5VTBLLgnChVYFrwMgwDVSLEsQwwrSieI9_HNCwIqwpScVmWgZRzNieFosRDxZzsWUf93EfZwGtbP8v2G5ayhnGUQNdD5lc08NGnZ7KHffa1Xb59KP0Oz7UuVdPIF7X80EAo5tT3uQkGfbBsl1q3qlpP9hB0kmEBnUvoXEInGX4lw8qgJz36VTfq-98cRNOH3FSGd3q-1u9qteZl-wSME-7D7fQM8DTndw_-FYTkB7MAi14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34274557</pqid></control><display><type>article</type><title>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dehay, Dominique ; Yao, Jian-Feng</creator><creatorcontrib>Dehay, Dominique ; Yao, Jian-Feng</creatorcontrib><description>Summary
The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/j.1467-842X.2006.00466.x</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>discrete observations ; likelihood estimator ; Markov jump process ; Mathematics ; Statistics</subject><ispartof>Australian & New Zealand journal of statistics, 2007-03, Vol.49 (1), p.93-107</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</citedby><cites>FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</cites><orcidid>0000-0002-5567-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-842X.2006.00466.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-842X.2006.00466.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00364850$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Yao, Jian-Feng</creatorcontrib><title>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</title><title>Australian & New Zealand journal of statistics</title><description>Summary
The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.</description><subject>discrete observations</subject><subject>likelihood estimator</subject><subject>Markov jump process</subject><subject>Mathematics</subject><subject>Statistics</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMtSgzAUhhlHZ7y-AytnXIAhCQksXGCbWpQWhXrdnAk0jFS0SrzUtzeI07XZ5MzJ_505-SzL9pDrmXO8cD3KuBNQfOdihJiLEGXMXW1YO-uHTVMTFjoe5WTb2tV6gZBHEWE71iid2kl8IZJ4nKZDW-SzeBLNYtMdpZk9jPNBJmYiubfT01xkN2JoT6LsIr2xz68nl_Zllg5Enot839qqZKPVwd-9Z12PxGwwdpL0LB5EiVMSs5VTBLLgnChVYFrwMgwDVSLEsQwwrSieI9_HNCwIqwpScVmWgZRzNieFosRDxZzsWUf93EfZwGtbP8v2G5ayhnGUQNdD5lc08NGnZ7KHffa1Xb59KP0Oz7UuVdPIF7X80EAo5tT3uQkGfbBsl1q3qlpP9hB0kmEBnUvoXEInGX4lw8qgJz36VTfq-98cRNOH3FSGd3q-1u9qteZl-wSME-7D7fQM8DTndw_-FYTkB7MAi14</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Dehay, Dominique</creator><creator>Yao, Jian-Feng</creator><general>Blackwell Publishing Asia</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></search><sort><creationdate>200703</creationdate><title>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</title><author>Dehay, Dominique ; Yao, Jian-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3466-b8ab773eeb24b7c998ec0072a824f42d055249b36fb3f7acc8aad6d3be4310bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>discrete observations</topic><topic>likelihood estimator</topic><topic>Markov jump process</topic><topic>Mathematics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Yao, Jian-Feng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Australian & New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehay, Dominique</au><au>Yao, Jian-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES</atitle><jtitle>Australian & New Zealand journal of statistics</jtitle><date>2007-03</date><risdate>2007</risdate><volume>49</volume><issue>1</issue><spage>93</spage><epage>107</epage><pages>93-107</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary
The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><doi>10.1111/j.1467-842X.2006.00466.x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-1473 |
ispartof | Australian & New Zealand journal of statistics, 2007-03, Vol.49 (1), p.93-107 |
issn | 1369-1473 1467-842X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00364850v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | discrete observations likelihood estimator Markov jump process Mathematics Statistics |
title | ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20LIKELIHOOD%20ESTIMATION%20FOR%20DISCRETELY%20OBSERVED%20MARKOV%20JUMP%20PROCESSES&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Dehay,%20Dominique&rft.date=2007-03&rft.volume=49&rft.issue=1&rft.spage=93&rft.epage=107&rft.pages=93-107&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/j.1467-842X.2006.00466.x&rft_dat=%3Cproquest_hal_p%3E34274557%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34274557&rft_id=info:pmid/&rfr_iscdi=true |