ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES

Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian & New Zealand journal of statistics 2007-03, Vol.49 (1), p.93-107
Hauptverfasser: Dehay, Dominique, Yao, Jian-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.
ISSN:1369-1473
1467-842X
DOI:10.1111/j.1467-842X.2006.00466.x