Spatial classification

The aim of a spatial classification is to position the units on a spatial network and to give simultaneously a set of structured classes of these units “compatible” with the network. We introduce the basic needed definitions: compatibility between a classification structure and a tessellation, ( m ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2008-04, Vol.156 (8), p.1271-1294
1. Verfasser: Diday, Edwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of a spatial classification is to position the units on a spatial network and to give simultaneously a set of structured classes of these units “compatible” with the network. We introduce the basic needed definitions: compatibility between a classification structure and a tessellation, ( m , k ) -networks as a case of tessellation, convex, maximal and connected subsets in such networks, spatial pyramids and spatial hierarchies. As like Robinsonian dissimilarities induced by indexed pyramids generalize ultrametrics induced by indexed hierarchies we show that a new kind of dissimilarity called “Yadidean” induced by spatial pyramids generalize Robinsonian dissimilarities. We focus on spatial pyramids where each class is a convex for a grid, and we show that there are several one-to-one correspondences with different kinds of Yadidean dissimilarities. These new results produce also, as a special case, several one-to-one correspondences between spatial hierarchies (resp. standard indexed pyramids) and Yadidean ultrametrics (resp. Robinsonian) dissimilarities. Qualities of spatial pyramids and their supremum under a given dissimilarity are considered. We give a constructive algorithm for convex spatial pyramids illustrated by an example. We show finally by a simple example that spatial pyramids on symbolic data can produce a geometrical representation of conceptual lattices of “symbolic objects”.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2007.04.031