The critical Z-invariant Ising model via dimers: the periodic case

We study a large class of critical two-dimensional Ising models namely critical Z-invariant Ising models on periodic graphs , example of which are the classical , triangular and honeycomb lattice at the critical temperature. Fisher (J Math Phys 7:1776–1781, 1966) introduced a correspondence between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2010-07, Vol.147 (3-4), p.379-413
Hauptverfasser: Boutillier, Cédric, de Tilière, Béatrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a large class of critical two-dimensional Ising models namely critical Z-invariant Ising models on periodic graphs , example of which are the classical , triangular and honeycomb lattice at the critical temperature. Fisher (J Math Phys 7:1776–1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z -invariant Ising model. We prove that the dimer characteristic polynomial is equal (up to a constant) to the critical Laplacian characteristic polynomial, and defines a Harnack curve of genus 0. We prove an explicit expression for the free energy, and for the Gibbs measure obtained as weak limit of Boltzmann measures.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-009-0210-1