Role of Bénard-Marangoni Instabilities during Solvent Evaporation in Polymer Surface Corrugations
Film formation through the drying of polymer solutions is a widely used process in laboratories and in many industrial applications such as coatings. One of the main goals of these applications is to control the film surface morphology. In many cases, evaporation has been found to yield corrugated p...
Gespeichert in:
Veröffentlicht in: | Langmuir 2009-01, Vol.25 (1), p.624-632 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Film formation through the drying of polymer solutions is a widely used process in laboratories and in many industrial applications such as coatings. One of the main goals of these applications is to control the film surface morphology. In many cases, evaporation has been found to yield corrugated patterns on the free surface of films. This has been interpreted in terms of either mechanical or hydrodynamic instabilities. In this article, we present experimental results where mesoscale 2D well-ordered surface corrugation patterns are formed during solvent evaporation from polystyrene/toluene solutions. The transformation of Benard-Marangoni instabilities into surface corrugation is studied during the entire drying process using particle tracking, 3D morphology analyses, etc. We show that the corrugation wavelength is controlled by the Benard-Marangoni instability, whereas the corrugation amplitude is controlled by a mechanism that involves a high evaporation rate. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la802979a |