Projective topology on bifinite domains and applications

We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2006-11, Vol.365 (3), p.171-183
Hauptverfasser: Abbes, Samy, Keimel, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 171
container_title Theoretical computer science
container_volume 365
creator Abbes, Samy
Keimel, Klaus
description We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.
doi_str_mv 10.1016/j.tcs.2006.07.047
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00350211v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397506004968</els_id><sourcerecordid>S0304397506004968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-9ePDQOknTJsHTsvgFC3rQc5imqaZ0m9KUhf33plT05lwGhveZYR5CrilkFGh512aTCRkDKDMQGXBxQlZUCpUypvgpWUEOPM2VKM7JRQgtxCpEuSLybfStNZM72GTyg-_85zHxfVK5xvVusknt9-j6kGBfJzgMnTM4Od-HS3LWYBfs1U9fk4_Hh_ftc7p7fXrZbnap4cCnFC2wUnDTlNaAQLBViUYypSpZAUqB3FTCmoZayrhiUjCjWCVzobAoVSnyNbld9n5hp4fR7XE8ao9OP292ep4B5AUwSg80ZumSNaMPYbTNL0BBz5p0q6MmPWvSIHTUFJmbhRkwGOyaEXvjwh8omYwa5933S87GZw_OjjoYZ3tjazdGf7r27p8r33XDfE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective topology on bifinite domains and applications</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abbes, Samy ; Keimel, Klaus</creator><creatorcontrib>Abbes, Samy ; Keimel, Klaus</creatorcontrib><description>We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2006.07.047</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Bifinite domains ; Computer Science ; Computer science; control theory; systems ; Continuous valuations ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Maximal elements ; Measure and integration ; Networking and Internet Architecture ; Radon measures ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2006-11, Vol.365 (3), p.171-183</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</citedby><cites>FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</cites><orcidid>0000-0003-3382-3647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397506004968$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18288791$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00350211$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbes, Samy</creatorcontrib><creatorcontrib>Keimel, Klaus</creatorcontrib><title>Projective topology on bifinite domains and applications</title><title>Theoretical computer science</title><description>We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Bifinite domains</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Continuous valuations</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximal elements</subject><subject>Measure and integration</subject><subject>Networking and Internet Architecture</subject><subject>Radon measures</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-9ePDQOknTJsHTsvgFC3rQc5imqaZ0m9KUhf33plT05lwGhveZYR5CrilkFGh512aTCRkDKDMQGXBxQlZUCpUypvgpWUEOPM2VKM7JRQgtxCpEuSLybfStNZM72GTyg-_85zHxfVK5xvVusknt9-j6kGBfJzgMnTM4Od-HS3LWYBfs1U9fk4_Hh_ftc7p7fXrZbnap4cCnFC2wUnDTlNaAQLBViUYypSpZAUqB3FTCmoZayrhiUjCjWCVzobAoVSnyNbld9n5hp4fR7XE8ao9OP292ep4B5AUwSg80ZumSNaMPYbTNL0BBz5p0q6MmPWvSIHTUFJmbhRkwGOyaEXvjwh8omYwa5933S87GZw_OjjoYZ3tjazdGf7r27p8r33XDfE8</recordid><startdate>20061112</startdate><enddate>20061112</enddate><creator>Abbes, Samy</creator><creator>Keimel, Klaus</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3382-3647</orcidid></search><sort><creationdate>20061112</creationdate><title>Projective topology on bifinite domains and applications</title><author>Abbes, Samy ; Keimel, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Bifinite domains</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Continuous valuations</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximal elements</topic><topic>Measure and integration</topic><topic>Networking and Internet Architecture</topic><topic>Radon measures</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbes, Samy</creatorcontrib><creatorcontrib>Keimel, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbes, Samy</au><au>Keimel, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective topology on bifinite domains and applications</atitle><jtitle>Theoretical computer science</jtitle><date>2006-11-12</date><risdate>2006</risdate><volume>365</volume><issue>3</issue><spage>171</spage><epage>183</epage><pages>171-183</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2006.07.047</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3382-3647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2006-11, Vol.365 (3), p.171-183
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_00350211v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Bifinite domains
Computer Science
Computer science
control theory
systems
Continuous valuations
Exact sciences and technology
Mathematical analysis
Mathematics
Maximal elements
Measure and integration
Networking and Internet Architecture
Radon measures
Sciences and techniques of general use
Theoretical computing
title Projective topology on bifinite domains and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20topology%20on%20bifinite%20domains%20and%20applications&rft.jtitle=Theoretical%20computer%20science&rft.au=Abbes,%20Samy&rft.date=2006-11-12&rft.volume=365&rft.issue=3&rft.spage=171&rft.epage=183&rft.pages=171-183&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2006.07.047&rft_dat=%3Celsevier_hal_p%3ES0304397506004968%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304397506004968&rfr_iscdi=true