Projective topology on bifinite domains and applications
We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theo...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2006-11, Vol.365 (3), p.171-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 3 |
container_start_page | 171 |
container_title | Theoretical computer science |
container_volume | 365 |
creator | Abbes, Samy Keimel, Klaus |
description | We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain. |
doi_str_mv | 10.1016/j.tcs.2006.07.047 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00350211v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397506004968</els_id><sourcerecordid>S0304397506004968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-9ePDQOknTJsHTsvgFC3rQc5imqaZ0m9KUhf33plT05lwGhveZYR5CrilkFGh512aTCRkDKDMQGXBxQlZUCpUypvgpWUEOPM2VKM7JRQgtxCpEuSLybfStNZM72GTyg-_85zHxfVK5xvVusknt9-j6kGBfJzgMnTM4Od-HS3LWYBfs1U9fk4_Hh_ftc7p7fXrZbnap4cCnFC2wUnDTlNaAQLBViUYypSpZAUqB3FTCmoZayrhiUjCjWCVzobAoVSnyNbld9n5hp4fR7XE8ao9OP292ep4B5AUwSg80ZumSNaMPYbTNL0BBz5p0q6MmPWvSIHTUFJmbhRkwGOyaEXvjwh8omYwa5933S87GZw_OjjoYZ3tjazdGf7r27p8r33XDfE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective topology on bifinite domains and applications</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abbes, Samy ; Keimel, Klaus</creator><creatorcontrib>Abbes, Samy ; Keimel, Klaus</creatorcontrib><description>We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2006.07.047</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Bifinite domains ; Computer Science ; Computer science; control theory; systems ; Continuous valuations ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Maximal elements ; Measure and integration ; Networking and Internet Architecture ; Radon measures ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2006-11, Vol.365 (3), p.171-183</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</citedby><cites>FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</cites><orcidid>0000-0003-3382-3647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397506004968$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18288791$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00350211$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbes, Samy</creatorcontrib><creatorcontrib>Keimel, Klaus</creatorcontrib><title>Projective topology on bifinite domains and applications</title><title>Theoretical computer science</title><description>We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Bifinite domains</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Continuous valuations</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximal elements</subject><subject>Measure and integration</subject><subject>Networking and Internet Architecture</subject><subject>Radon measures</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-9ePDQOknTJsHTsvgFC3rQc5imqaZ0m9KUhf33plT05lwGhveZYR5CrilkFGh512aTCRkDKDMQGXBxQlZUCpUypvgpWUEOPM2VKM7JRQgtxCpEuSLybfStNZM72GTyg-_85zHxfVK5xvVusknt9-j6kGBfJzgMnTM4Od-HS3LWYBfs1U9fk4_Hh_ftc7p7fXrZbnap4cCnFC2wUnDTlNaAQLBViUYypSpZAUqB3FTCmoZayrhiUjCjWCVzobAoVSnyNbld9n5hp4fR7XE8ao9OP292ep4B5AUwSg80ZumSNaMPYbTNL0BBz5p0q6MmPWvSIHTUFJmbhRkwGOyaEXvjwh8omYwa5933S87GZw_OjjoYZ3tjazdGf7r27p8r33XDfE8</recordid><startdate>20061112</startdate><enddate>20061112</enddate><creator>Abbes, Samy</creator><creator>Keimel, Klaus</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3382-3647</orcidid></search><sort><creationdate>20061112</creationdate><title>Projective topology on bifinite domains and applications</title><author>Abbes, Samy ; Keimel, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ae02674cf6ec07a0eb6ac8299b8b0a87a4cb7ecf1e12492872c92b8379a569673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Bifinite domains</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Continuous valuations</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximal elements</topic><topic>Measure and integration</topic><topic>Networking and Internet Architecture</topic><topic>Radon measures</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbes, Samy</creatorcontrib><creatorcontrib>Keimel, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbes, Samy</au><au>Keimel, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective topology on bifinite domains and applications</atitle><jtitle>Theoretical computer science</jtitle><date>2006-11-12</date><risdate>2006</risdate><volume>365</volume><issue>3</issue><spage>171</spage><epage>183</epage><pages>171-183</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2006.07.047</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3382-3647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2006-11, Vol.365 (3), p.171-183 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00350211v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Bifinite domains Computer Science Computer science control theory systems Continuous valuations Exact sciences and technology Mathematical analysis Mathematics Maximal elements Measure and integration Networking and Internet Architecture Radon measures Sciences and techniques of general use Theoretical computing |
title | Projective topology on bifinite domains and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20topology%20on%20bifinite%20domains%20and%20applications&rft.jtitle=Theoretical%20computer%20science&rft.au=Abbes,%20Samy&rft.date=2006-11-12&rft.volume=365&rft.issue=3&rft.spage=171&rft.epage=183&rft.pages=171-183&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2006.07.047&rft_dat=%3Celsevier_hal_p%3ES0304397506004968%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304397506004968&rfr_iscdi=true |