Projective topology on bifinite domains and applications

We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2006-11, Vol.365 (3), p.171-183
Hauptverfasser: Abbes, Samy, Keimel, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit extension results from continuous valuations to Radon measures for bifinite domains. In the framework of bifinite domains, the Prokhorov theorem (existence of projective limits of Radon measures) appears as a natural tool, and helps building a bridge between Measure theory and Domain theory. The study we present also fills a gap in the literature concerning the coincidence between projective and Lawson topology for bifinite domains. Motivated by probabilistic considerations, we study the extension of measures in order to define Borel measures on the space of maximal elements of a bifinite domain.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2006.07.047