The eigenvalues of the Laplacian on domains with small slits

We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our ear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2010-12, Vol.362 (12), p.6231-6259
Hauptverfasser: Hillairet, Luc, Judge, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6259
container_issue 12
container_start_page 6231
container_title Transactions of the American Mathematical Society
container_volume 362
creator Hillairet, Luc
Judge, Chris
description We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum.
doi_str_mv 10.1090/S0002-9947-2010-04943-8
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00345667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40997202</jstor_id><sourcerecordid>40997202</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-2d33f39b03ee7f3bf144d05c5640380a1c02178f580d7d4b870f23f362d53b933</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKcfQezFg4fom_8peBlDnVDw4DyHtE1cRteOpk789rar9OzpJe_ved7AD6EbAvcEUnh4BwCK05QrTIEABp5yhvUJmhHQGkst4BTNJugcXcS47Z_AtZyhx_XGJS58uvpgqy8Xk8YnXb_K7L6yRbB10tRJ2exsqGPyHbpNEne2qpJYhS5eojNvq-iu_uYcfTw_rZcrnL29vC4XGbaciQ7TkjHP0hyYc8qz3BPOSxCFkByYBksKoERpLzSUquS5VuBpb0haCpanjM3R3Xh3Yyuzb8POtj-mscGsFpkZdgCMCynVgfSsGtmibWJsnZ8EAmYozBwLM0MXZijMHAszujdvR3NvY2Er39q6CHHSKeOSSzFw1yO3jV3TTjmHNFUUaJ_TMbe7-O_PfwH4H4D1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The eigenvalues of the Laplacian on domains with small slits</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Hillairet, Luc ; Judge, Chris</creator><creatorcontrib>Hillairet, Luc ; Judge, Chris</creatorcontrib><description>We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-2010-04943-8</identifier><identifier>CODEN: TAMTAM</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Analysis of PDEs ; Boundary conditions ; Coordinate systems ; Eigenfunctions ; Eigenvalues ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Laplacians ; Mathematical theorems ; Mathematics ; Mathieu function ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Polygons ; Research article ; Sciences and techniques of general use ; Spectral Theory ; Vertices</subject><ispartof>Transactions of the American Mathematical Society, 2010-12, Vol.362 (12), p.6231-6259</ispartof><rights>Copyright 2010 American Mathematical Society; reverts to public domain 28 years from publication</rights><rights>2010 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-2d33f39b03ee7f3bf144d05c5640380a1c02178f580d7d4b870f23f362d53b933</citedby><orcidid>0009-0009-6010-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2010-362-12/S0002-9947-2010-04943-8/S0002-9947-2010-04943-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2010-362-12/S0002-9947-2010-04943-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23304,23308,27903,27904,57995,57999,58228,58232,77582,77584,77592,77594</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23464658$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00345667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillairet, Luc</creatorcontrib><creatorcontrib>Judge, Chris</creatorcontrib><title>The eigenvalues of the Laplacian on domains with small slits</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum.</description><subject>Analysis of PDEs</subject><subject>Boundary conditions</subject><subject>Coordinate systems</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Laplacians</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Mathieu function</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Polygons</subject><subject>Research article</subject><subject>Sciences and techniques of general use</subject><subject>Spectral Theory</subject><subject>Vertices</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LwzAYh4MoOKcfQezFg4fom_8peBlDnVDw4DyHtE1cRteOpk789rar9OzpJe_ved7AD6EbAvcEUnh4BwCK05QrTIEABp5yhvUJmhHQGkst4BTNJugcXcS47Z_AtZyhx_XGJS58uvpgqy8Xk8YnXb_K7L6yRbB10tRJ2exsqGPyHbpNEne2qpJYhS5eojNvq-iu_uYcfTw_rZcrnL29vC4XGbaciQ7TkjHP0hyYc8qz3BPOSxCFkByYBksKoERpLzSUquS5VuBpb0haCpanjM3R3Xh3Yyuzb8POtj-mscGsFpkZdgCMCynVgfSsGtmibWJsnZ8EAmYozBwLM0MXZijMHAszujdvR3NvY2Er39q6CHHSKeOSSzFw1yO3jV3TTjmHNFUUaJ_TMbe7-O_PfwH4H4D1</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Hillairet, Luc</creator><creator>Judge, Chris</creator><general>American Mathematical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0009-6010-151X</orcidid></search><sort><creationdate>20101201</creationdate><title>The eigenvalues of the Laplacian on domains with small slits</title><author>Hillairet, Luc ; Judge, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-2d33f39b03ee7f3bf144d05c5640380a1c02178f580d7d4b870f23f362d53b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of PDEs</topic><topic>Boundary conditions</topic><topic>Coordinate systems</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Laplacians</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Mathieu function</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Polygons</topic><topic>Research article</topic><topic>Sciences and techniques of general use</topic><topic>Spectral Theory</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillairet, Luc</creatorcontrib><creatorcontrib>Judge, Chris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillairet, Luc</au><au>Judge, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The eigenvalues of the Laplacian on domains with small slits</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>362</volume><issue>12</issue><spage>6231</spage><epage>6259</epage><pages>6231-6259</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><coden>TAMTAM</coden><abstract>We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-2010-04943-8</doi><tpages>29</tpages><orcidid>https://orcid.org/0009-0009-6010-151X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2010-12, Vol.362 (12), p.6231-6259
issn 0002-9947
1088-6850
language eng
recordid cdi_hal_primary_oai_HAL_hal_00345667v1
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Analysis of PDEs
Boundary conditions
Coordinate systems
Eigenfunctions
Eigenvalues
Exact sciences and technology
General mathematics
General, history and biography
Geometry
Laplacians
Mathematical theorems
Mathematics
Mathieu function
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Polygons
Research article
Sciences and techniques of general use
Spectral Theory
Vertices
title The eigenvalues of the Laplacian on domains with small slits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20eigenvalues%20of%20the%20Laplacian%20on%20domains%20with%20small%20slits&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Hillairet,%20Luc&rft.date=2010-12-01&rft.volume=362&rft.issue=12&rft.spage=6231&rft.epage=6259&rft.pages=6231-6259&rft.issn=0002-9947&rft.eissn=1088-6850&rft.coden=TAMTAM&rft_id=info:doi/10.1090/S0002-9947-2010-04943-8&rft_dat=%3Cjstor_hal_p%3E40997202%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=40997202&rfr_iscdi=true