The eigenvalues of the Laplacian on domains with small slits

We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our ear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2010-12, Vol.362 (12), p.6231-6259
Hauptverfasser: Hillairet, Luc, Judge, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-2010-04943-8