The eigenvalues of the Laplacian on domains with small slits
We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our ear...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2010-12, Vol.362 (12), p.6231-6259 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-2010-04943-8 |