Simple Birational Extensions of the Polynomial Algebra C[3]
The Abhyankar-Sathaye Problem asks whether any biregular embedding$\varphi \colon {\Bbb C}^{k}\hookrightarrow {\Bbb C}^{n}$can be rectified, that is, whether there exists an automorphism α ∈ Aut Cnsuch that α ⚬ φ is a linear embedding. Here we study this problem for the embeddings$\varphi \colon {\B...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2004-02, Vol.356 (2), p.509-555 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Abhyankar-Sathaye Problem asks whether any biregular embedding$\varphi \colon {\Bbb C}^{k}\hookrightarrow {\Bbb C}^{n}$can be rectified, that is, whether there exists an automorphism α ∈ Aut Cnsuch that α ⚬ φ is a linear embedding. Here we study this problem for the embeddings$\varphi \colon {\Bbb C}^{3}\hookrightarrow {\Bbb C}^{4}$whose image X=φ ( C3) is given in C4by an equation p=f(x,y)u+g(x,y,z)=0, where$f\in {\Bbb C}[x,y]\backslash ${0} and g∈ C[x,y,z]. Under certain additional assumptions we show that, indeed, the polynomial p is a variable of the polynomial ring C[4]= C[x,y,z,u] (i.e., a coordinate of a polynomial automorphism of C4). This is an analog of a theorem due to Sathaye (1976) which concerns the case of embeddings${\Bbb C}^{2}\hookrightarrow {\Bbb C}^{3}$. Besides, we generalize a theorem of Miyanishi (1984) giving, for a polynomial p as above, a criterion for when X=p-1(0)≃ C3. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/s0002-9947-03-03398-1 |