Vénéreau polynomials and related fiber bundles
The Vénéreau polynomials v n≔y+x n(xz+y(yu+z 2)), n⩾1, on A C 4 have all fibers isomorphic to the affine space A C 3 . Moreover, for all n⩾1 the map (v n,x): A C 4→ A C 2 yields a flat family of affine planes over A C 2 . In the present note we show that over the punctured plane A C 2⧹{ 0 ̄ } , this...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2004-09, Vol.192 (1), p.275-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Vénéreau polynomials
v
n≔y+x
n(xz+y(yu+z
2)),
n⩾1,
on
A
C
4
have all fibers isomorphic to the affine space
A
C
3
. Moreover, for all
n⩾1 the map
(v
n,x):
A
C
4→
A
C
2
yields a flat family of affine planes over
A
C
2
. In the present note we show that over the punctured plane
A
C
2⧹{
0
̄
}
, this family is a fiber bundle. This bundle is trivial if and only if
v
n
is a variable of the ring
C[x][y,z,u]
over
C[x]
.
It is an open question whether
v
1 and
v
2 are variables of the polynomial ring
C
[4]=
C[x,y,z,u]
, whereas Vénéreau established that
v
n
is indeed a variable of
C[x][y,z,u]
over
C[x]
for
n⩾3. In this note we give another proof of Vénéreau's result based on the above equivalence. We also discuss some other equivalent properties, as well as~the relations to the Abhyankar–Sathaye Embedding Problem and to the Dolgachev–Weisfeiler Conjecture on triviality of flat families with fibers affine spaces. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2004.01.009 |