D’Alembertian series solutions at ordinary points of LODE with polynomial coefficients
By definition, the coefficient sequence c = ( c n ) of a d’Alembertian series — Taylor’s or Laurent’s — satisfies a linear recurrence equation with coefficients in C ( n ) and the corresponding recurrence operator can be factored into first-order factors over C ( n ) (if this operator is of order 1,...
Gespeichert in:
Veröffentlicht in: | Journal of symbolic computation 2009, Vol.44 (1), p.48-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By definition, the coefficient sequence
c
=
(
c
n
)
of a d’Alembertian series — Taylor’s or Laurent’s — satisfies a linear recurrence equation with coefficients in
C
(
n
)
and the corresponding recurrence operator can be factored into first-order factors over
C
(
n
)
(if this operator is of order 1, then the series is hypergeometric). Let
L
be a linear differential operator with polynomial coefficients. We prove that if the expansion of an analytic solution
u
(
z
)
of the equation
L
(
y
)
=
0
at an ordinary (i.e., non-singular) point
z
0
∈
C
of
L
is a d’Alembertian series, then the expansion of
u
(
z
)
is of the same type at
any ordinary point. All such solutions are of a simple form. However the situation can be different at singular points. |
---|---|
ISSN: | 0747-7171 1095-855X |
DOI: | 10.1016/j.jsc.2008.04.004 |