Alternating Projections on Manifolds

We prove that if two smooth manifolds intersect transversally, then the method of alternating projections converges locally at a linear rate. We bound the speed of convergence in terms of the angle between the manifolds, which in turn we relate to the modulus of metric regularity for the intersectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2008-02, Vol.33 (1), p.216-234
Hauptverfasser: Lewis, Adrian S, Malick, Jerome
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if two smooth manifolds intersect transversally, then the method of alternating projections converges locally at a linear rate. We bound the speed of convergence in terms of the angle between the manifolds, which in turn we relate to the modulus of metric regularity for the intersection problem, a natural measure of conditioning. We discuss a variety of problem classes where the projections are computationally tractable, and we illustrate the method numerically on a problem of finding a low-rank solution of a matrix equation.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.1070.0291