Planar graphs without cycles of length from 4 to 7 are 3-colorable
Planar graphs without cycles of length from 4 to 7 are proved to be 3-colorable. Moreover, it is proved that each proper 3-coloring of a face of length from 8 to 11 in a connected plane graph without cycles of length from 4 to 7 can be extended to a proper 3-coloring of the whole graph. This improve...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 2005, Vol.93 (2), p.303-311 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Planar graphs without cycles of length from 4 to 7 are proved to be 3-colorable. Moreover, it is proved that each proper 3-coloring of a face of length from 8 to 11 in a connected plane graph without cycles of length from 4 to 7 can be extended to a proper 3-coloring of the whole graph. This improves on the previous results on a long standing conjecture of Steinberg. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1016/j.jctb.2004.11.001 |