On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains

We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q > 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2009-02, Vol.9 (1), p.149-164
Hauptverfasser: Al Sayed, Waad, Véron, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 149
container_title Advanced nonlinear studies
container_volume 9
creator Al Sayed, Waad
Véron, Laurent
description We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q > 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q < N/(N - 2) and it is unique if ӘΩ = ӘΩ̅ . If ӘΩ has the local graph property, we prove that there exists at most one solution to problem (P).
doi_str_mv 10.1515/ans-2009-0107
format Article
fullrecord <record><control><sourceid>walterdegruyter_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00300801v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2009_010791149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f2492b469d061c88f956a17e26367788a5de130a0c5dc71aa15d3148f0aaa9373</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEhV0ZM_KEPDFsZOwVaVQpIgiQVmta-K0rlKb2g2o_x6HICZuudPT9053j5AroDfAgd-i8XFCaRFToNkJGSUgwswyfkpGwJmIgQl-Tsbeb2motEhSzkfkfWGipdH7ThnlfWSbqES3VtGrbbuDtuZHeram1Uahi17Q4cq2uopm-w4HQJse8DtrD5vo3u5QG39JzhpsvRr_9guyfJi9TedxuXh8mk7KuGICDnGThDtWqShqKqDK86bgAiFTiWAiy_Icea2AUaQVr6sMEIHXDNK8oYhYsIxdkOth7wZb-eH0Dt1RWtRyPillr1HKKM0pfCaBjQe2ctZ7p5o_A1DZZyhDhrLPUPYZBv5u4L-wPShXq7XrjmGQW9s5E77631cApAX7BpIUdsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains</title><source>Alma/SFX Local Collection</source><source>Walter De Gruyter: Open Access Journals</source><creator>Al Sayed, Waad ; Véron, Laurent</creator><creatorcontrib>Al Sayed, Waad ; Véron, Laurent</creatorcontrib><description>We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q &gt; 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q &lt; N/(N - 2) and it is unique if ӘΩ = ӘΩ̅ . If ӘΩ has the local graph property, we prove that there exists at most one solution to problem (P).</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2009-0107</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>Analysis of PDEs ; Mathematics ; Parabolic equations ; removable singularities ; self-similarity ; singular solutions</subject><ispartof>Advanced nonlinear studies, 2009-02, Vol.9 (1), p.149-164</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f2492b469d061c88f956a17e26367788a5de130a0c5dc71aa15d3148f0aaa9373</citedby><cites>FETCH-LOGICAL-c361t-f2492b469d061c88f956a17e26367788a5de130a0c5dc71aa15d3148f0aaa9373</cites><orcidid>0000-0003-1190-9714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2009-0107/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2009-0107/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,66901,68685</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00300801$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Al Sayed, Waad</creatorcontrib><creatorcontrib>Véron, Laurent</creatorcontrib><title>On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains</title><title>Advanced nonlinear studies</title><description>We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q &gt; 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q &lt; N/(N - 2) and it is unique if ӘΩ = ӘΩ̅ . If ӘΩ has the local graph property, we prove that there exists at most one solution to problem (P).</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><subject>Parabolic equations</subject><subject>removable singularities</subject><subject>self-similarity</subject><subject>singular solutions</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EEhV0ZM_KEPDFsZOwVaVQpIgiQVmta-K0rlKb2g2o_x6HICZuudPT9053j5AroDfAgd-i8XFCaRFToNkJGSUgwswyfkpGwJmIgQl-Tsbeb2motEhSzkfkfWGipdH7ThnlfWSbqES3VtGrbbuDtuZHeram1Uahi17Q4cq2uopm-w4HQJse8DtrD5vo3u5QG39JzhpsvRr_9guyfJi9TedxuXh8mk7KuGICDnGThDtWqShqKqDK86bgAiFTiWAiy_Icea2AUaQVr6sMEIHXDNK8oYhYsIxdkOth7wZb-eH0Dt1RWtRyPillr1HKKM0pfCaBjQe2ctZ7p5o_A1DZZyhDhrLPUPYZBv5u4L-wPShXq7XrjmGQW9s5E77631cApAX7BpIUdsA</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Al Sayed, Waad</creator><creator>Véron, Laurent</creator><general>Advanced Nonlinear Studies, Inc</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1190-9714</orcidid></search><sort><creationdate>20090201</creationdate><title>On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains</title><author>Al Sayed, Waad ; Véron, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f2492b469d061c88f956a17e26367788a5de130a0c5dc71aa15d3148f0aaa9373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><topic>Parabolic equations</topic><topic>removable singularities</topic><topic>self-similarity</topic><topic>singular solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Sayed, Waad</creatorcontrib><creatorcontrib>Véron, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Sayed, Waad</au><au>Véron, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>9</volume><issue>1</issue><spage>149</spage><epage>164</epage><pages>149-164</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q &gt; 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q &lt; N/(N - 2) and it is unique if ӘΩ = ӘΩ̅ . If ӘΩ has the local graph property, we prove that there exists at most one solution to problem (P).</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2009-0107</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1190-9714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1365
ispartof Advanced nonlinear studies, 2009-02, Vol.9 (1), p.149-164
issn 1536-1365
2169-0375
language eng
recordid cdi_hal_primary_oai_HAL_hal_00300801v2
source Alma/SFX Local Collection; Walter De Gruyter: Open Access Journals
subjects Analysis of PDEs
Mathematics
Parabolic equations
removable singularities
self-similarity
singular solutions
title On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Uniqueness%20of%20Large%20Solutions%20of%20Nonlinear%20Parabolic%20Equations%20in%20Nonsmooth%20Domains&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=Al%20Sayed,%20Waad&rft.date=2009-02-01&rft.volume=9&rft.issue=1&rft.spage=149&rft.epage=164&rft.pages=149-164&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2009-0107&rft_dat=%3Cwalterdegruyter_hal_p%3E10_1515_ans_2009_010791149%3C/walterdegruyter_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true