On Uniqueness of Large Solutions of Nonlinear Parabolic Equations in Nonsmooth Domains

We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q > 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2009-02, Vol.9 (1), p.149-164
Hauptverfasser: Al Sayed, Waad, Véron, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence and uniqueness of the positive solutions of the problem (P): Ә u - Δu + u = 0 (q > 1) in Ω × (0, ∞), u = ∞ on ӘΩ × (0, ∞) and u(., 0) ∈ L (Ω), when Ω is a bounded domain in ℝ . We construct a maximal solution, prove that this maximal solution is a large solution whenever q < N/(N - 2) and it is unique if ӘΩ = ӘΩ̅ . If ӘΩ has the local graph property, we prove that there exists at most one solution to problem (P).
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2009-0107