Macro and microchemistry of trace metals in vitrified domestic wastes by laser ablation ICP-MS and scanning electron microprobe X-ray energy dispersive spectroscopy

Management of domestic wastes often relies on incineration, a process that eliminates large amount of wastes but also produces toxic residues that concentrate heavy metals. Those hazardous secondary wastes require specific treatment. Vitrification is seen as a powerful way to stabilise them. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 1998-07, Vol.46 (3), p.407-422
Hauptverfasser: Motelica-Heino, M, Le Coustumer, P, Thomassin, J.H, Gauthier, A, Donard, O.F.X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Management of domestic wastes often relies on incineration, a process that eliminates large amount of wastes but also produces toxic residues that concentrate heavy metals. Those hazardous secondary wastes require specific treatment. Vitrification is seen as a powerful way to stabilise them. However, concern exists about the long term behaviour of these glass wastes and the potential release of toxic species into the environment. The answers will come with further investigation into the physico-chemical evolution of the vitrified wastes and the mobility of hazardous elements within the matrix with appropriate analytical methods. Laser ablation coupled with inductively coupled mass spectrometry (LA-ICP-MS) is a challenging technique for the chemical analysis of trace elements in solid materials. This paper presents an evaluation of the potential of LA- ICP-MS for macro and microanalysis of trace metals in domestic vitrified wastes with regards to other physical analytical techniques of solids such as scanning electronprobe X-ray energy dispersive spectroscopy (SEM-EDXS). Two typical samples, vitreous and crystallised, are used to compare the analytical performances of the two techniques. SEM-EDXS was used for mineralogical characterisation and chemical analysis of the mineralogical phases. Relative micro-analysis and bulk quantitative analysis of 30 major, minor and trace elements was performed by LA-ICP-MS: precision was between 10 and 20% for most elements and quantitative analysis proved possible with an accuracy of 20% and relative detection limits of 0.1 mg kg −1.
ISSN:0039-9140
1873-3573
DOI:10.1016/S0039-9140(97)00402-5