Temperature Measurement by Visible Pyrometry: Orthogonal Cutting Application

The working processes of metallic materials at high strain rate like forging, stamping and machining often induce high temperatures that are difficult to quantify precisely. In this work we, developed a high-speed broad band visible pyrometer using an intensified CCD camera (spectral range: 0.4 μm–0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2004-12, Vol.126 (6), p.931-936
Hauptverfasser: Ranc, N, Pina, V, Sutter, G, Philippon, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The working processes of metallic materials at high strain rate like forging, stamping and machining often induce high temperatures that are difficult to quantify precisely. In this work we, developed a high-speed broad band visible pyrometer using an intensified CCD camera (spectral range: 0.4 μm–0.9 μm). The advantage of the visible pyrometry technique is to limit the temperature error due to the uncertainties on the emissivity value and to have a good spatial resolution (3.6 μm) and a large observation area. This pyrometer was validated in the case of high speed machining and more precisely in the orthogonal cutting of a low carbon steel XC18. The cutting speed varies between 22 ms−1 and 60 ms−1. The experimental device allows one to visualize the evolution of the temperature field in the chip according to the cutting speed. The maximum temperature in the chip can reach 730°C and minimal temperature which can be detected is around 550°C.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.1833361