Composition and Size-Dependent Extinction Coefficient of Colloidal PbSe Quantum Dots
Inductively coupled plasma mass spectrometry (ICP-MS) was combined with UV–vis−NIR spectrophotometry and transmission electron microscopy to determine the nanocrystal composition and molar extinction coefficient ϵ of colloidal PbSe quantum dot (Q-PbSe) suspensions. The ICP-MS results show a nonstoic...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2007-12, Vol.19 (25), p.6101-6106 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inductively coupled plasma mass spectrometry (ICP-MS) was combined with UV–vis−NIR spectrophotometry and transmission electron microscopy to determine the nanocrystal composition and molar extinction coefficient ϵ of colloidal PbSe quantum dot (Q-PbSe) suspensions. The ICP-MS results show a nonstoichiometric Pb/Se ratio, with a systematic excess of lead for all samples studied. The observed ratio is consistent with a faceted spherical Q-PbSe model, composed of a quasi stoichiometric Q-PbSe core terminated by a Pb surface shell. At high photon energies, we find that ϵ scales with the nanocrystal volume, irrespective of the Q-PbSe size. From ϵ, we calculated a size-independent absorption coefficient. Its value is in good agreement with the theoretical value for bulk PbSe. At the band gap, ϵ is size-dependent. The resulting absorption coefficient increases quadratically with decreasing Q-PbSe size. Calculations of the oscillator strength of the first optical transition are in good agreement with theoretical tight binding calculations, showing that the oscillator strength increases linearly with Q-PbSe size. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm071410q |