A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem

We consider a transmission wave equation in two embedded domains in $R^2$ , where the speed is $a1 > 0$ in the inner domain and $a2 > 0$ in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strictly convex and $a1 > a2$ ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2007-02, Vol.23 (1), p.257-278
Hauptverfasser: Baudouin, Lucie, Mercado, Alberto, Osses, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a transmission wave equation in two embedded domains in $R^2$ , where the speed is $a1 > 0$ in the inner domain and $a2 > 0$ in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strictly convex and $a1 > a2$ . As a consequence of this inequality, uniqueness and Lip- schitz stability are obtained for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coefficient from a single time-dependent Neumann boundary measurement.
ISSN:0266-5611
1361-6420
DOI:10.1088/0266-5611/23/1/014