A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
We consider a transmission wave equation in two embedded domains in $R^2$ , where the speed is $a1 > 0$ in the inner domain and $a2 > 0$ in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strictly convex and $a1 > a2$ ....
Gespeichert in:
Veröffentlicht in: | Inverse problems 2007-02, Vol.23 (1), p.257-278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a transmission wave equation in two embedded domains in $R^2$ , where the speed is $a1 > 0$ in the inner domain and $a2 > 0$ in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strictly convex and $a1 > a2$ . As a consequence of this inequality, uniqueness and Lip- schitz stability are obtained for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coefficient from a single time-dependent Neumann boundary measurement. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/0266-5611/23/1/014 |