Invariance de la Gamma-dimension pour certaines familles kählériennes de dimension 3
In this article, we study some properties of deformation invariance of the Gamma-dimension (defined for X a compact kähler manifold). This birational invariant is defined as the codimension of the maximal compact subvarieties in the universal cover of X. In the surface case, the deformation invarian...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2010, Vol.266 (2), p.265-284 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study some properties of deformation invariance of the Gamma-dimension (defined for X a compact kähler manifold). This birational invariant is defined as the codimension of the maximal compact subvarieties in the universal cover of X. In the surface case, the deformation invariance is a straightforward consequence of a theorem of Y.-T. Siu. Using some results from F. Campana et Q. Zhang, we settle this invariance for certain type of Kähler families of dimension 3. |
---|---|
ISSN: | 0025-5874 1432-1823 |