Invariance de la Gamma-dimension pour certaines familles kählériennes de dimension 3

In this article, we study some properties of deformation invariance of the Gamma-dimension (defined for X a compact kähler manifold). This birational invariant is defined as the codimension of the maximal compact subvarieties in the universal cover of X. In the surface case, the deformation invarian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2010, Vol.266 (2), p.265-284
1. Verfasser: Claudon, Benoît
Format: Artikel
Sprache:fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study some properties of deformation invariance of the Gamma-dimension (defined for X a compact kähler manifold). This birational invariant is defined as the codimension of the maximal compact subvarieties in the universal cover of X. In the surface case, the deformation invariance is a straightforward consequence of a theorem of Y.-T. Siu. Using some results from F. Campana et Q. Zhang, we settle this invariance for certain type of Kähler families of dimension 3.
ISSN:0025-5874
1432-1823