The cavitation instability induced by the development of a re-entrant jet

The instability of a partial cavity induced by the development of a re-entrant jet is investigated on the basis of experiments conducted on a diverging step. Detailed visualizations of the cavity behaviour allowed us to identify the domain of the re-entrant jet instability which leads to classical c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2001-10, Vol.444, p.223-256
Hauptverfasser: CALLENAERE, MATHIEU, FRANC, JEAN-PIERRE, MICHEL, JEAN-MARIE, RIONDET, MICHEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The instability of a partial cavity induced by the development of a re-entrant jet is investigated on the basis of experiments conducted on a diverging step. Detailed visualizations of the cavity behaviour allowed us to identify the domain of the re-entrant jet instability which leads to classical cloud cavitation. The surrounding regimes are also investigated, in particular the special case of thin cavities which do not oscillate in length but surprisingly exhibit a re-entrant jet of periodical behaviour. The velocity of the re-entrant jet is measured from visualizations, in the case of both cloud cavitation and thin cavities. The limits of the domain of the re-entrant jet instability are corroborated by velocity fluctuation measurements. By varying the divergence and the confinement of the channel, it is shown that the extent of the auto-oscillation domain primarily depends upon the average adverse pressure gradient in the channel. This conclusion is corroborated by the determination of the pressure gradient on the basis of LDV measurements which shows a good correlation between the domain of the cloud cavitation instability and the region of high adverse pressure gradient. A simple phenomenological model of the development of the re-entrant jet in an adverse pressure gradient confirms the strong influence of the pressure gradient on the development of the re-entrant jet and particularly on its thickness. An ultrasonic technique is developed to measure the re-entrant jet thickness, which allowed us to compare it with the cavity thickness. By considering an estimate of the characteristic height of the perturbations developing on the interface of the cavity and of the re-entrant jet, it is shown that cloud cavitation requires negligible interaction between both interfaces, i.e. a thick enough cavity. In the case of thin cavities, this interaction becomes predominant; the cavity interface breaks at many points, giving birth to small-scale vapour structures unlike the large-scale clouds which are periodically shed in the case of cloud cavitation. The low-frequency content of the cloud cavitation instability is investigated using spectral analysis of wall pressure signals. It is shown that the characteristic frequency of cloud cavitation corresponds to a Strouhal number of about 0.2 whatever the operating conditions and the cavity length may be, provided the Strouhal number is computed on the basis of the maximum cavity length. For long enough cavities, anoth
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112001005420