PAC-Bayesian bounds for randomized empirical risk minimizers

The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni [6, 8] in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of statistics 2008-12, Vol.17 (4), p.279-304
1. Verfasser: Alquier, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni [6, 8] in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control of the risk of the latter. These results allow us to bound the risk of very general estimation procedures, as well as to perform model selection.
ISSN:1066-5307
1934-8045
DOI:10.3103/S1066530708040017