Tensor Products of Principal Unitary Representations of Quantum Lorentz Group and Askey-Wilson Polynomials

We study the tensor product of principal unitary representations of the quantum Lorentz group, prove a decomposition theorem and compute the associated intertwiners. We show that these intertwiners can be expressed in terms of complex continuations of 6j symbols of U_q(su(2)). These intertwiners are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2000, Vol.41, p.7715-7751
Hauptverfasser: Buffenoir, E., Roche, Ph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the tensor product of principal unitary representations of the quantum Lorentz group, prove a decomposition theorem and compute the associated intertwiners. We show that these intertwiners can be expressed in terms of complex continuations of 6j symbols of U_q(su(2)). These intertwiners are expressed in terms of q-Racah polynomials and Askey-Wilson polynomials. The orthogonality of these intertwiners imply some relation mixing these two families of polynomials. The simplest of these relations is the orthogonality of Askey-Wilson polynomials.
ISSN:0022-2488
DOI:10.1063/1.1289828