The T Cell Surface—How Well Do We Know It?
The overall degree of complexity of the T cell surface has been unclear, constraining our understanding of its biology. Using global gene expression analysis, we show that 111 of 374 genes encoding well-characterized leukocyte surface antigens are expressed by a resting cytotoxic T cell. Unexpectedl...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2003-08, Vol.19 (2), p.213-223 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The overall degree of complexity of the T cell surface has been unclear, constraining our understanding of its biology. Using global gene expression analysis, we show that 111 of 374 genes encoding well-characterized leukocyte surface antigens are expressed by a resting cytotoxic T cell. Unexpectedly, of 97 stringently defined, T cell-specific transcripts with unknown functions that we identify, none encode proteins with the modular architecture characteristic of 80% of leukocyte surface antigens. Only two encode proteins with membrane topologies found exclusively in cell surface molecules. Our analysis indicates that the cell type-specific composition of the resting CD8+ T cell surface is now largely defined, providing an insight into the overall compositional complexity of the mammalian cell surface and a framework for formulating systematic models of T cell surface-dependent processes, such as T cell receptor triggering. |
---|---|
ISSN: | 1074-7613 1097-4180 |
DOI: | 10.1016/S1074-7613(03)00198-5 |