Modeling of Strained CMOS on Disposable SiGe Dots: Strain Impacts on Devices' Electrical Characteristics
We proposed a new nonplanar disposable SiGe dot (d-Dot) MOSFET based on Si-on-nothing technology. The new device concepts' relies on self-assembled single-crystalline d-Dot. The d-Dot MOSFET is prone to a particularly high strain/stress, both from the underlaying SiGe 3-D islands and from the s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2007-09, Vol.54 (9), p.2321-2326 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We proposed a new nonplanar disposable SiGe dot (d-Dot) MOSFET based on Si-on-nothing technology. The new device concepts' relies on self-assembled single-crystalline d-Dot. The d-Dot MOSFET is prone to a particularly high strain/stress, both from the underlaying SiGe 3-D islands and from the stressed capping layers. We show that more than 80% and 50% higher mobilities of holes and electrons, respectively, can be obtained, as indicated by 3-D simulations performed throughout the entire fabrication process. Significant improvements in drive currents, transit frequencies, and the short channel effects are demonstrated using 2-D device simulation. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2007.902719 |