Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices

Examination of the morphological correlates of long‐term potentiation (LTP) in the hippocampus requires the analysis of both the presynaptic and postsynaptic elements. However, ultrastructural measurements of synapses and dendritic spines following LTP induced via tetanic stimulation presents the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2005-06, Vol.21 (12), p.3368-3378
Hauptverfasser: Stewart, M. G., Medvedev, N. I., Popov, V. I., Schoepfer, R., Davies, H. A., Murphy, K., Dallérac, G. M, Kraev, I. V., Rodríguez, J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Examination of the morphological correlates of long‐term potentiation (LTP) in the hippocampus requires the analysis of both the presynaptic and postsynaptic elements. However, ultrastructural measurements of synapses and dendritic spines following LTP induced via tetanic stimulation presents the difficulty that not all synapses examined are necessarily activated. To overcome this limitation, and to ensure that a very large proportion of the synapses and spines examined have been potentiated, we induced LTP in acute hippocampal slices of adult mice by addition of tetraethylammonium (TEA) to a modified CSF containing an elevated concentration of Ca2+ and no Mg+. Quantitative electron microscope morphometric analyses and three‐dimensional (3‐D) reconstructions of both dendritic spines and postsynaptic densities (PSDs) in CA1 stratum radiatum were made on serial ultrathin sections. One hour after chemical LTP induction the proportion of macular (unperforated) synapses decreased (50%) whilst the number of synapses with simple perforated and complex PSDs (nonmacular) increased significantly (17%), without significant changes in volume and surface area of the PSD. In addition, the surface area of mushroom spines increased significantly (13%) whilst there were no volume differences in either mushroom or thin spines, or in surface area of thin spines. CA1 stratum radiatum contained multiple‐synapse en passant axons as well as multiple‐synapse spines, which were unaffected by chemical LTP. Our results suggest that chemical LTP induces active dendritic spine remodelling and correlates with a change in the weight and strength of synaptic transmission as shown by the increase in the proportion of nonmacular synapses.
ISSN:0953-816X
1460-9568
DOI:10.1111/j.1460-9568.2005.04174.x