Services within a Busy Period of an M/M/1 Queue and Dyck Paths
We analyze the service times of customers in a stable M/M/1 queue in equilibrium depending on their position in a busy period. We give the law of the service of a customer at the beginning, at the end, or in the middle of the busy period. It enables as a by-product to prove that the process of insta...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2005-01, Vol.49 (1), p.73-84 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the service times of customers in a stable M/M/1 queue in equilibrium depending on their position in a busy period. We give the law of the service of a customer at the beginning, at the end, or in the middle of the busy period. It enables as a by-product to prove that the process of instants of beginning of services is not Poisson. We then proceed to a more precise analysis. We consider a family of polynomial generating series associated with Dyck paths of length 2n and we show that they provide the correlation function of the successive services in a busy period with n+1 customers. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0257-0130 1572-9443 |
DOI: | 10.1007/s11134-004-5556-6 |