Sphingosine-induced apoptosis in rhabdomyosarcoma cell lines is dependent on pre-mitochondrial Bax activation and post-mitochondrial caspases

Sphingolipids is the collective term ascribed to components of the sphingomyelin cycle. Modulation of the cellular levels of individual sphingolipids can induce a diverse range of cellular responses including apoptosis, proliferation, and cell cycle arrest. We present data showing that rhabdomyosarc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2007-01, Vol.67 (2), p.756-764
Hauptverfasser: Phillips, Darren C, Martin, Sophie, Doyle, Belinda T, Houghton, Janet A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sphingolipids is the collective term ascribed to components of the sphingomyelin cycle. Modulation of the cellular levels of individual sphingolipids can induce a diverse range of cellular responses including apoptosis, proliferation, and cell cycle arrest. We present data showing that rhabdomyosarcoma cell lines, independent of lineage (alveolar rhabdomyosarcoma and embryonal rhabdomyosarcoma), are particularly sensitive to the induction of apoptosis as a result of an elevation in the cellular levels of sphingosine (D-erythro-sphingosine). Sphingosine-mediated apoptosis does not require its metabolism to the related proapoptotic molecule ceramide and is stereospecific because exposure of the rhabdomyosarcoma cell line RD to the L-erythro and DL-threo isoforms of sphingosine did not induce apoptosis. Importantly, for efficient induction of apoptosis, sphingosine required Bax activation and consequential translocation to the mitochondria. This resulted in selective mitochondrial release of cytochrome c and Smac/Diablo but not other mitochondrial related factors (apoptosis-inducing factor, endonuclease G, and HtrA2/Omi). Using small interfering RNA, reduced Bax expression conferred the impaired release of mitochondrial cytochrome c to the cytoplasm following sphingosine exposure, inhibiting the induction of apoptosis. Furthermore, dissipation of the inner mitochondrial membrane potential and enhanced production of reactive oxygen species were not observed. Bax activation and cytochrome c release were independent of caspases; however, caspase-3 and caspase-9 activity distal to the mitochondria was essential for the execution of apoptosis.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.can-06-2374