Maximal slope of tensor product of Hermitian vector bundles
We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski’s First Theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle M ¯ \overline M of the tensor p...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2009-07, Vol.18 (3), p.575-603 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski’s First Theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle
M
¯
\overline M
of the tensor product. In the case where the generic fiber of
M
M
is semistable in the sense of geometric invariant theory, the estimation is established by constructing, through the classical invariant theory, a special polynomial which does not vanish on the generic fibre of
M
M
. Otherwise we use an explicit version of a result of Ramanan and Ramanathan to reduce the general case to the former one. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/S1056-3911-08-00513-4 |