Maximal slope of tensor product of Hermitian vector bundles

We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski’s First Theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle M ¯ \overline M of the tensor p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2009-07, Vol.18 (3), p.575-603
1. Verfasser: Chen, Huayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski’s First Theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle M ¯ \overline M of the tensor product. In the case where the generic fiber of M M is semistable in the sense of geometric invariant theory, the estimation is established by constructing, through the classical invariant theory, a special polynomial which does not vanish on the generic fibre of M M . Otherwise we use an explicit version of a result of Ramanan and Ramanathan to reduce the general case to the former one.
ISSN:1056-3911
1534-7486
DOI:10.1090/S1056-3911-08-00513-4