Tropospheric ozone over the tropical Atlantic: A satellite perspective

We use satellite sensor measurements to obtain a broad picture of the processes affecting tropical tropospheric O3 production over Africa and the Atlantic in the early part of the year. Terra/MOPITT CO retrievals correlate well with biomass burning fire counts observed by the TRMM/VIRS instrument in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2003-04, Vol.108 (D8), p.ACH2.1-n/a
Hauptverfasser: Edwards, D. P., Lamarque, J.-F., Attié, J.-L., Emmons, L. K., Richter, A., Cammas, J.-P., Gille, J. C., Francis, G. L., Deeter, M. N., Warner, J., Ziskin, D. C., Lyjak, L. V., Drummond, J. R., Burrows, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use satellite sensor measurements to obtain a broad picture of the processes affecting tropical tropospheric O3 production over Africa and the Atlantic in the early part of the year. Terra/MOPITT CO retrievals correlate well with biomass burning fire counts observed by the TRMM/VIRS instrument in Northern Hemisphere savanna regions and allow investigation of the subsequent convection of the biomass burning plume at the intertropical convergence zone and interhemispheric transport. Measurements of NO2 from the ERS‐2/GOME instrument enable identification of two important tropical sources of this O3 precursor, biomass burning and lightning. Good correlation is seen between NO2 retrievals and TRMM/LIS lightning flash observations in southern African regions free of biomass burning, thus indicating a probable lightning source of NOx. The combination of MOPITT CO, GOME NO2, and TRMM fire and lightning flash counts provides a powerful tool for investigating the tropospheric production of O3 precursors. These data are used in conjunction with the MOZART‐2 chemical transport model to investigate the early year tropical Atlantic tropospheric O3 distribution using January 2001 as a case study. Inconsistencies between the various tropical tropospheric O3 column products obtained from EP/TOMS data, and between these products, in situ measurements, and modeling, have led to questions about how the Northern Hemisphere biomass burning is connected to the TOMS derived O3 maximum in the tropical southern Atlantic. We show that the early year tropical O3 distribution is actually characterized by two maxima. The first arises due to biomass burning emissions, is located near the Northern Hemisphere fires, and is most evident in the lower troposphere. The second is located in the southern tropical Atlantic midtroposphere, and results from NOx produced by lightning over southern Africa and South America.
ISSN:0148-0227
2169-9380
2156-2202
2169-9402
DOI:10.1029/2002JD002927