Space propagation of instabilities in Zakharov equations

In this paper we study an initial-boundary-value problem for the Zakharov equations, describing the space propagation of a laser beam entering a plasma. We prove a strong instability result and prove that the mathematical problem is ill-posed in Sobolev spaces. We also show that it is well posed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2008-07, Vol.237 (10), p.1640-1654
1. Verfasser: Metivier, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study an initial-boundary-value problem for the Zakharov equations, describing the space propagation of a laser beam entering a plasma. We prove a strong instability result and prove that the mathematical problem is ill-posed in Sobolev spaces. We also show that it is well posed in spaces of analytic functions. Several consequences for the physical consistency of the model are discussed.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2008.03.024