Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type
Let Г be a torsion-free uniform lattice of SU( m , 1), m > 1. Let G be either SU( p , 2) with p ≥ 2, or SO( p , 2) with p ≥ 3. The symmetric spaces associated to these G ’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the corres...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2008-12, Vol.137 (1), p.85-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Г be a torsion-free uniform lattice of SU(
m
, 1),
m
> 1. Let
G
be either SU(
p
, 2) with
p
≥ 2,
or SO(
p
, 2) with
p
≥ 3. The symmetric spaces associated to these
G
’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the correspondence between representations of fundamental groups of Kähler manifolds and Higgs bundles we study representations of the lattice Г into
G
. We prove that the Toledo invariant associated to such a representation satisfies a Milnor-Wood type inequality and that in case of equality necessarily
G
= SU(
p
, 2) with
p
≥ 2
m
and the representation is reductive, faithful, discrete, and stabilizes a copy of complex hyperbolic space (of maximal possible induced holomorphic sectional curvature) holomorphically and totally geodesically embedded in the Hermitian symmetric space SU(
p
, 2)/S(U(
p
) × U(2)), on which it acts cocompactly. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-008-9288-3 |