Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type

Let Г be a torsion-free uniform lattice of SU( m , 1), m > 1. Let G be either SU( p , 2) with p ≥ 2, or SO( p , 2) with p ≥ 3. The symmetric spaces associated to these G ’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2008-12, Vol.137 (1), p.85-111
Hauptverfasser: Koziarz, Vincent, Maubon, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Г be a torsion-free uniform lattice of SU( m , 1), m > 1. Let G be either SU( p , 2) with p ≥ 2, or SO( p , 2) with p ≥ 3. The symmetric spaces associated to these G ’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the correspondence between representations of fundamental groups of Kähler manifolds and Higgs bundles we study representations of the lattice Г into G . We prove that the Toledo invariant associated to such a representation satisfies a Milnor-Wood type inequality and that in case of equality necessarily G  = SU( p , 2) with p ≥ 2 m and the representation is reductive, faithful, discrete, and stabilizes a copy of complex hyperbolic space (of maximal possible induced holomorphic sectional curvature) holomorphically and totally geodesically embedded in the Hermitian symmetric space SU( p , 2)/S(U( p ) × U(2)), on which it acts cocompactly.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-008-9288-3