Density functional theory description of hole-trapping in SiO2 : A self-interaction-corrected approach

We present a self-interaction-corrected (SIC) density-functional-theory (DFT) approach for the description of systems with an unpaired electron or hole such as spin-1/2 defect centers in solids or radicals. Our functional is easy to implement and its minimization does not require additional computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2005-05, Vol.71 (20), p.205210.1-205210.5
Hauptverfasser: D'AVEZAC, Mayeul, CALANDRA, Matteo, MAURI, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a self-interaction-corrected (SIC) density-functional-theory (DFT) approach for the description of systems with an unpaired electron or hole such as spin-1/2 defect centers in solids or radicals. Our functional is easy to implement and its minimization does not require additional computational effort with respect to ordinary DFT functionals. In particular it does not present multiminima, as do the conventional SIC functionals. We successfully validate the method studying the hole self-trapping in quartz associated with the Al substitutional impurity. We show that our approach corrects for the well-known failures of standard DFT functionals in this system.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.71.205210