Heat perturbation of bovine eye lens alpha-crystallin probed by covalently attached ratiometric fluorescent dye 4'-diethylamino-3-hydroxyflavone

Bovine eye lens alpha-crystallin was covalently labeled with 6-bromomethyl-4'-diethylamino-3-hydroxyflavone and studied under native-like conditions and at the elevated temperature (60 degrees C) that is known to facilitate alpha-crystallin chaperone-like activity. This novel SH-reactive two-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 2005-08, Vol.78 (6), p.340-348
Hauptverfasser: Avilov, S V, Bode, Cs, Tolgyesi, F G, Klymchenko, A S, Fidy, J, Demchenko, A P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bovine eye lens alpha-crystallin was covalently labeled with 6-bromomethyl-4'-diethylamino-3-hydroxyflavone and studied under native-like conditions and at the elevated temperature (60 degrees C) that is known to facilitate alpha-crystallin chaperone-like activity. This novel SH-reactive two-band ratiometric fluorescent probe is characterized by two highly emissive N*- and T*-bands; the latter appears due to excited state intramolecular proton transfer reaction. The positions of these bands and the ratio of their intensities for the alpha-crystallin-dye conjugate are the sensitive indicators of polarity of the dye environment and its participation in intermolecular hydrogen bonding. Although we found that the dye labels both the SH and the NH2 groups in alpha-crystallin, a recently developed procedure allowed us to distinguish between the heat-induced spectral changes of the dye molecules attached to SH and NH2 groups. We observed that at elevated temperature the environment of the SH-attached dye becomes more polar and flexible. The number of H-bond acceptor groups in the vicinity of the dye decreases. Since alpha-crystallin contains a single Cys residue within the C-terminal domain of its (alpha)A subunit (the (alpha)B subunit contains none), we can attribute the observed effects to temperature-induced changes in the C-terminal domain of this protein.
ISSN:0006-3525
1097-0282
DOI:10.1002/bip.20285