An Intrisic Topology for Orthomodular Lattices
We present a general way to define a topology on orthomodular lattices. We show that in the case of a Hilbert lattice, this topology is equivalent to that induced by the metrics of the corresponding Hilbert space. Moreover, we show that in the case of a boolean algebra, the obtained topology is the...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2007-11, Vol.46 (11), p.2887-2900 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a general way to define a topology on orthomodular lattices. We show that in the case of a Hilbert lattice, this topology is equivalent to that induced by the metrics of the corresponding Hilbert space. Moreover, we show that in the case of a boolean algebra, the obtained topology is the discrete one. Thus, our construction provides a general tool for studying orthomodular lattices but also a way to distinguish classical and quantum logics. |
---|---|
ISSN: | 0020-7748 1572-9575 |
DOI: | 10.1007/s10773-007-9400-8 |