An Intrisic Topology for Orthomodular Lattices

We present a general way to define a topology on orthomodular lattices. We show that in the case of a Hilbert lattice, this topology is equivalent to that induced by the metrics of the corresponding Hilbert space. Moreover, we show that in the case of a boolean algebra, the obtained topology is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2007-11, Vol.46 (11), p.2887-2900
1. Verfasser: Brunet, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a general way to define a topology on orthomodular lattices. We show that in the case of a Hilbert lattice, this topology is equivalent to that induced by the metrics of the corresponding Hilbert space. Moreover, we show that in the case of a boolean algebra, the obtained topology is the discrete one. Thus, our construction provides a general tool for studying orthomodular lattices but also a way to distinguish classical and quantum logics.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-007-9400-8