Discovery and Refinement of a New Structural Class of Potent Peptide Deformylase Inhibitors
New classes of antibiotics are urgently needed to counter increasing levels of pathogen resistance. Peptide deformylase (PDF) was originally selected as a specific bacterial target, but a human homologue, the inhibition of which causes cell death, was recently discovered. We developed a dual-screeni...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2007-01, Vol.50 (1), p.10-20 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New classes of antibiotics are urgently needed to counter increasing levels of pathogen resistance. Peptide deformylase (PDF) was originally selected as a specific bacterial target, but a human homologue, the inhibition of which causes cell death, was recently discovered. We developed a dual-screening strategy for selecting highly effective compounds with low inhibition effect against human PDF. We selected a new scaffold in vitro that discriminated between human and bacterial PDFs. Analyses of structure−activity relationships identified potent antibiotics such as 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (6b) with the same mode of action in vivo as previously identified PDF inhibitors but without the apoptotic effects of these inhibitors in human cells. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm060910c |