Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization

This article proposes an automatic characterization method by comparing unknown images with examples more or less known. Our approach allows to use uncertain examples but easy to obtain (e.g. by automatic retrieval on the Internet). The use of fuzzy logic and adaptive clustering makes it possible to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2007-04, Vol.20 (3), p.266-276
Hauptverfasser: Lancieri, Luigi, Boubchir, Larbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes an automatic characterization method by comparing unknown images with examples more or less known. Our approach allows to use uncertain examples but easy to obtain (e.g. by automatic retrieval on the Internet). The use of fuzzy logic and adaptive clustering makes it possible to reduce automatically the noise from this database by preserving only the examples having a strong level of redundancy in the dominant shapes. To validate this method, we compared our artificial process of recognition with the estimation of human operators. The tests show that the automatic process gives an average accuracy of the characterization near to 95%.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2006.05.018