Navier–Stokes regularization of multidimensional Euler shocks

We establish existence and stability of multidimensional shock fronts in the vanishing viscosity limit for a general class of conservation laws with “real”, or partially parabolic, viscosity including the Navier–Stokes equations of compressible gas dynamics with standard or van der Waals-type equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales scientifiques de l'École normale supérieure 2006, Vol.39 (1), p.75-175
Hauptverfasser: Guès, C.M.I. Olivier, Métivier, Guy, Williams, Mark, Zumbrun, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish existence and stability of multidimensional shock fronts in the vanishing viscosity limit for a general class of conservation laws with “real”, or partially parabolic, viscosity including the Navier–Stokes equations of compressible gas dynamics with standard or van der Waals-type equation of state. More precisely, given a curved Lax shock solution u 0 of the corresponding inviscid equations for which (i) each of the associated planar shocks tangent to the shock front possesses a smooth viscous profile and (ii) each of these viscous profiles satisfies a uniform spectral stability condition expressed in terms of an Evans function, we construct nearby smooth viscous shock solutions u ε of the viscous equations converging to u 0 as viscosity ε → 0 , and establish for these sharp linearized stability estimates generalizing those of Majda in the inviscid case. Conditions (i)–(ii) hold always for shock waves of sufficiently small amplitude, but in general may fail for large amplitudes. We treat the viscous shock problem considered here as a representative of a larger class of multidimensional boundary problems arising in the study of viscous fluids, characterized by sharp spectral conditions rather than symmetry hypotheses, which can be analyzed by Kreiss-type symmetrizers. Compared to the strictly parabolic (artificial viscosity) case, the main new features of the analysis appear in the high frequency estimates for the linearized problem. In that regime we use frequency-dependent conjugators to decouple parabolic components that are smoothed from hyperbolic components (like density in Navier–Stokes) that are not. The construction of the conjugators and the subsequent estimates depend on a careful spectral analysis of the linearized operator. Nous démontrons l'existence et la stabilité d'ondes de chocs multidimensionnelles à viscosité évanescente pour une classe générale de systèmes de lois de conservation partiellement paraboliques possédant une viscosité « réaliste », et incluant le système des équations de Navier–Stokes de la dynamique des gaz compressibles pour une équation d'état standard ou de type Van der Vaals. Plus précisément, étant donnée une solution onde de choc u 0 du système hyperbolique sans viscosité pour laquelle (i) chaque choc plan tangent admet un profil de choc visqueux et (ii) chacun de ces profils de chocs satisfait une hypothèse spectrale de stabilité uniforme formulée en termes de fonction d'Evans, nous contruisons une famil
ISSN:0012-9593
1873-2151
DOI:10.1016/j.ansens.2005.12.002