X-ray absorption near-edge structure and valence state of Mn in (Ga,Mn)N

The band structure of the diluted magnetic semiconductor (Ga,Mn)N, and the x-ray absorption near-edge structure (XANES) at the K edge of Mn, were calculated using the linearized augmented plane wave method. The calculated K-edge spectra fit well with experimental data obtained on samples of Ga1-xMnx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2005-09, Vol.72 (11), Article 115209
Hauptverfasser: Titov, A., Biquard, X., Halley, D., Kuroda, S., Bellet-Amalric, E., Mariette, H., Cibert, J., Merad, A. E., Merad, G., Kanoun, M. B., Kulatov, E., Uspenskii, Yu. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The band structure of the diluted magnetic semiconductor (Ga,Mn)N, and the x-ray absorption near-edge structure (XANES) at the K edge of Mn, were calculated using the linearized augmented plane wave method. The calculated K-edge spectra fit well with experimental data obtained on samples of Ga1-xMnxN with a wide range of Mn content, from x=0.3% to 5.7%. These samples were grown by molecular beam epitaxy. X-ray diffraction measurements and extended x-ray absorption fine structure studies were used to confirm the wurtzite structure of the samples, the absence of any secondary phase, and the substitutional position of Mn in the gallium sublattice of GaN. The shape of the measured XANES spectra does not depend on the Mn content, implying the same valence state and local atomic structure around the Mn atom in all samples. The comparison between the measured spectra and the results of the ab initio calculation offers a clear interpretation of the preedge structure: It is mainly due to dipolar transitions, with a single peak in the case of Mn2+ and an additional peak for Mn3+. Such a behavior of the XANES preedge of Mn2+ was confirmed experimentally on Ga,MnAs and Zn,MnTe. We conclude that the valence state of Mn in wurtzite (Ga,Mn)N is 3+, a conclusion which is also supported by infrared optical transmission and magnetization data obtained on the same samples.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.72.115209