Accreted fragments of the Late Cretaceous Caribbean–Colombian Plateau in Ecuador

The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85–80 Ma (San Juan–unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithos 2003-02, Vol.66 (3), p.173-199
Hauptverfasser: Mamberti, Marc, Lapierre, Henriette, Bosch, Delphine, Jaillard, Etienne, Ethien, Raynald, Hernandez, Jean, Polvé, Mireille
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85–80 Ma (San Juan–unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high εNd i and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their εNd i are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower εNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan–Multitud Unit by higher Pb ratios and lower εNd i. The Ecuadorian and Gorgona 88–86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92–86 Ma Mg-rich basalts of the Caribbean–Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68–65 Ma).
ISSN:0024-4937
1872-6143
DOI:10.1016/S0024-4937(02)00218-9