Sobolev Algebras on Lie Groups and Riemannian Manifolds

We prove that on any connected unimodular Lie group G, the space$L_{\alpha}^{p}(G)\cap L^{\infty}(G)$, where$L_{\alpha}^{p}(G)$is the Sobolev space of order α > 0 associated with a sublaplacian, is an algebra under pointwise product. This generalizes results due to Strichartz (in the Euclidean ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2001-04, Vol.123 (2), p.283-342
Hauptverfasser: Coulhon, Thierry, Russ, Emmanuel, Tardivel-Nachef, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that on any connected unimodular Lie group G, the space$L_{\alpha}^{p}(G)\cap L^{\infty}(G)$, where$L_{\alpha}^{p}(G)$is the Sobolev space of order α > 0 associated with a sublaplacian, is an algebra under pointwise product. This generalizes results due to Strichartz (in the Euclidean case), to Bohnke (in the case of stratified groups), and others. A global version of this fact holds for groups with polynomial growth. We give similar results for Riemannian manifolds with Ricci curvature bounded from below, respectively nonnegative.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2001.0009