Sobolev Algebras on Lie Groups and Riemannian Manifolds
We prove that on any connected unimodular Lie group G, the space$L_{\alpha}^{p}(G)\cap L^{\infty}(G)$, where$L_{\alpha}^{p}(G)$is the Sobolev space of order α > 0 associated with a sublaplacian, is an algebra under pointwise product. This generalizes results due to Strichartz (in the Euclidean ca...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2001-04, Vol.123 (2), p.283-342 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that on any connected unimodular Lie group G, the space$L_{\alpha}^{p}(G)\cap L^{\infty}(G)$, where$L_{\alpha}^{p}(G)$is the Sobolev space of order α > 0 associated with a sublaplacian, is an algebra under pointwise product. This generalizes results due to Strichartz (in the Euclidean case), to Bohnke (in the case of stratified groups), and others. A global version of this fact holds for groups with polynomial growth. We give similar results for Riemannian manifolds with Ricci curvature bounded from below, respectively nonnegative. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2001.0009 |