Integrability of Invariant Metrics on the Diffeomorphism Group of the Circle

Each Hk Sobolev inner product (k ≥ 0) defines a Hamiltonian vector field Xk on the regular dual of the Lie algebra of the diffeomorphism group of the circle. We show that only X0 and X1 are bi-Hamiltonian relative to a modified Lie-Poisson structure.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2006-04, Vol.16 (2), p.109-122
Hauptverfasser: Constantin, A., Kolev, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Each Hk Sobolev inner product (k ≥ 0) defines a Hamiltonian vector field Xk on the regular dual of the Lie algebra of the diffeomorphism group of the circle. We show that only X0 and X1 are bi-Hamiltonian relative to a modified Lie-Poisson structure.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-005-0707-4