A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space

In this paper, we give pinching theorems for the first nonzero eigenvalue λ1(M) of the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we prove that if the volume of M is 1 then, for any ε > 0, there exists a constant Cε depending on the dimension n of M and the L∞-norm of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2007-01, Vol.82 (1), p.175-195
Hauptverfasser: Colbois, Bruno, Grosjean, Jean-Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give pinching theorems for the first nonzero eigenvalue λ1(M) of the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we prove that if the volume of M is 1 then, for any ε > 0, there exists a constant Cε depending on the dimension n of M and the L∞-norm of the mean curvature H, so that if the L2p-norm ||H||2p (p ≥ 2) of H satisfies n||H ||2p2 − Cε < λ1(M), then the Hausdorff-distance between M and a round sphere of radius (n/λ1(M))1/2 is smaller than ε. Furthermore, we prove that if C is a small enough constant depending on n and the L∞-norm of the second fundamental form, then the pinching condition n||H ||2p2 − C < λ1(M) implies that M is diffeomorphic to an n-dimensional sphere.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/88