Filtration de certains espaces de fonctions sur un espace symétrique réductif
We introduce a filtration of a ( g,K) -module of some space of functions on a reductive symmetric space G/ H, and compute the associated grading as a direct sum of induced representations. As an application of this result to the reductive groups viewed as symmetric spaces, we are able to realize any...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2004, Vol.217 (2), p.314-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a filtration of a
(
g,K)
-module of some space of functions on a reductive symmetric space
G/
H, and compute the associated grading as a direct sum of induced representations. As an application of this result to the reductive groups viewed as symmetric spaces, we are able to realize any Harish-Chandra module as a subquotient of a direct sum of induced representations from parabolic subgroups, the inducing representations being trivial on the unipotent radical. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2004.02.006 |