Finite-element analysis of periodic piezoelectric transducers

The need for optimized acoustic transducers for the development of high-quality imaging probes requires efficient simulation tools providing reliable descriptions of the behavior of real devices. The purpose of this work is the implementation of a finite-element model for the simulation of periodic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2003-01, Vol.93 (1), p.702-711
Hauptverfasser: Ballandras, Sylvain, Wilm, Mikaël, Edoa, Paul-Francis, Soufyane, Abdelaziz, Laude, Vincent, Steichen, William, Lardat, Raphaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need for optimized acoustic transducers for the development of high-quality imaging probes requires efficient simulation tools providing reliable descriptions of the behavior of real devices. The purpose of this work is the implementation of a finite-element model for the simulation of periodic transducer arrays. By using the assumption of harmonic excitation, the harmonic admittance of the studied structure can be derived. It is then shown how the mutual admittance is deduced from this feature, allowing one to estimate the amount of cross-talk effects for a given periodic transducer. Computation results are reported for standard linear acoustic probes, 2-2 (one-dimensional periodic) and 1-3 (two-dimensional periodic) piezocomposite materials. In the case of 2-2 connectivity composites, a comparison between nonperiodic and periodic computations of the mutual admittance is conducted, from which the minimum number of periods for which periodic computations can be trustfully considered can be estimated.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1524711