Secondary structures of short peptide chains in the gas phase: double resonance spectroscopy of protected dipeptides

The conformational structure of short peptide chains in the gas phase is studied by laser spectroscopy of a series of protected dipeptides, Ac-Xxx-Phe-NH(2), Xxx=Gly, Ala, and Val. The combination of laser desorption with supersonic expansion enables us to vaporize the peptide molecules and cool the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-02, Vol.122 (5), p.54317-54317
Hauptverfasser: Chin, Wutharath, Dognon, Jean-Pierre, Canuel, Clélia, Piuzzi, François, Dimicoli, Iliana, Mons, Michel, Compagnon, Isabelle, von Helden, Gert, Meijer, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conformational structure of short peptide chains in the gas phase is studied by laser spectroscopy of a series of protected dipeptides, Ac-Xxx-Phe-NH(2), Xxx=Gly, Ala, and Val. The combination of laser desorption with supersonic expansion enables us to vaporize the peptide molecules and cool them internally; IR/UV double resonance spectroscopy in comparison to density functional theory calculations on Ac-Gly-Phe-NH(2) permits us to identify and characterize the conformers populated in the supersonic expansion. Two main conformations, corresponding to secondary structures of proteins, are found to compete in the present experiments. One is composed of a doubly gamma-fold corresponding to the 2(7) ribbon structure. Topologically, this motif is very close to a beta-strand backbone conformation. The second conformation observed is the beta-turn, responsible for the chain reversal in proteins. It is characterized by a relatively weak hydrogen bond linking remote NH and CO groups of the molecule and leading to a ten-membered ring. The present gas phase experiment illustrates the intrinsic folding properties of the peptide chain and the robustness of the beta-turn structure, even in the absence of a solvent. The beta-turn population is found to vary significantly with the residues within the sequence; the Ac-Val-Phe-NH(2) peptide, with its two bulky side chains, exhibits the largest beta-turn population. This suggests that the intrinsic stabilities of the 2(7) ribbon and the beta-turn are very similar and that weakly polar interactions occurring between side chains can be a decisive factor capable of controlling the secondary structure.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1839862