Segregation in aqueous methanol enhanced by cooling and compression

Molecular segregation in methanol-water mixtures is studied across a wide concentration range as a function of temperature and pressure. Cluster distributions obtained from both neutron diffraction and molecular dynamics simulations point to significantly enhanced segregation as the mixtures are coo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-05, Vol.122 (17), p.174514-174514
Hauptverfasser: Dougan, L, Hargreaves, R, Bates, S P, Finney, J L, Réat, V, Soper, A K, Crain, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular segregation in methanol-water mixtures is studied across a wide concentration range as a function of temperature and pressure. Cluster distributions obtained from both neutron diffraction and molecular dynamics simulations point to significantly enhanced segregation as the mixtures are cooled or compressed. This evolution toward greater molecular heterogenity in the mixture accounts for the observed changes in the water-water radial distribution function and there are indications also of a change in the topology of the water clusters. The observed behavior is consistent with an approach to an upper critical solution point. Such a point would appear to be "hidden" below the freezing line, thereby precluding observation of the two-fluid region.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1888405